{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

The Wisdom of David Kerridge—Part 2

Statistics in the real world aren't quite as tidy as those in a text book.

Davis Balestracci
Thu, 07/09/2009 - 04:00
  • Comment
  • RSS

Social Sharing block

  • Print
Body

Click here to read part 1 of this series.

Analytic statistical methods are in very strong contrast with what is normally taught in most statistics textbooks, which describe the problem as one of “accepting” or “rejecting” hypotheses. In the real world of quality improvement, we must look for repeatability over many different populations. Walter Shewhart added the new concept of statistical control, which defines repeatability over time sampling from a process, rather than a population.

ADVERTISEMENT

For example, the effectiveness of a drug may depend on the age of the patient, or previous treatment, or the stage of the disease. Ideally we want one treatment that works well in all foreseeable circumstances, but we may not be able to get it. Once we recognize that the aim of the study is to predict, we can see what range of possibilities are most important. We not only design studies to cover a wide range of circumstances, but to make the “inference gap” as small as possible.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us