A team of Lawrence Livermore National Laboratory (LLNL) scientists has simulated the droplet-ejection process in an emerging metal 3D-printing technique called “liquid metal jetting” (LMJ), a critical aspect to the continued advancement of liquid metal printing technologies.
ADVERTISEMENT |
In their paper, which was published in the journal Physics of Fluids, the team describes the simulating of metal droplets during LMJ, a novel process in which molten droplets of liquid metal are jetted from a nozzle to 3D-print a part in layers. The process does not require lasers or metal powder and is more similar to inkjet printing techniques.
Using the model, researchers studied the primary breakup dynamics of the metal droplets, essential to improving the understanding of LMJ. LMJ has advantages over powder-based approaches in that it provides a wider material set and does not require production or handling of potentially hazardous powders, researchers said.
…
Add new comment