{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

What You Need to Know About Gamma Probability Models

The more you know, the easier it becomes to use your data

Photo by Scott Graham on Unsplash

Donald J. Wheeler
Wed, 02/07/2024 - 12:03
  • Comment
  • RSS

Social Sharing block

  • Print
  • Add new comment
Body

Clear thinking and simplicity of analysis require concise, clear, and correct notions about probability models and how to use them. Here, we’ll examine the basic properties of the family of gamma and chi-square distributions that play major roles in the development of statistical techniques. An appreciation of how these probability models function will allow you to analyze your data with confidence that your results are reliable, solid, and correct.

ADVERTISEMENT

The gamma family of distributions

Gamma distributions are widely used in all areas of statistics, and are found in most statistical software. Since software facilitates our use of the gamma models, the following formulas are given here only in the interest of clarity of notation. Gamma distributions depend upon two parameters, denoted here by alpha and beta. The probability density function for the gamma family has the form:

where the symbol Γ(α) denotes the gamma function (for α > 0):

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Comments

Submitted by Steve65 on Thu, 02/08/2024 - 06:40

Typical Dr. Wheeler Article

This article is typical of Dr. Wheeler's monthly nuggets of wisdom:  there are enough technical details to satisfy the brainiest of math nerds and statisticians, and enough simple explanation for the rest of us to benefit from it as well. 

Dr. Wheeler is truly a national treasure.

  • Reply

Submitted by heldtb on Wed, 03/06/2024 - 09:51

In reply to Typical Dr. Wheeler Article by Steve65

I second that

Allow me to second your comment. Dr. Wheeler and this entire journal are true gems.

  • Reply

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us