{domain:"www.qualitydigest.com",server:"169.47.211.87"} Skip to main content

User account menu
Main navigation
  • Topics
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Videos/Webinars
    • All videos
    • Product Demos
    • Webinars
  • Advertise
    • Advertise
    • Submit B2B Press Release
    • Write for us
  • Metrology Hub
  • Training
  • Subscribe
  • Log in
Mobile Menu
  • Home
  • Topics
    • 3D Metrology-CMSC
    • Customer Care
    • FDA Compliance
    • Healthcare
    • Innovation
    • Lean
    • Management
    • Metrology
    • Operations
    • Risk Management
    • Six Sigma
    • Standards
    • Statistics
    • Supply Chain
    • Sustainability
    • Training
  • Login / Subscribe
  • More...
    • All Features
    • All News
    • All Videos
    • Contact
    • Training

DNV Launches Recommended Practices for Safely Applying Industrial AI

Providing practical interpretation of the EU AI Act

Mon, 12/04/2023 - 12:01
  • Comment
  • RSS

Social Sharing block

  • Print
Body

(DNV: Høvik, Norway) -- DNV, a risk management and assurance company, has published a suite of recommended practices (RPs) that will enable companies operating critical devices, assets, and infrastructure to safely apply artificial intelligence (AI).

ADVERTISEMENT

High-quality AI systems require strong building blocks: data, sensors, algorithms, and digital twins. The nine new or updated RPs cover each of these digital building blocks. DNV’s strong sector knowledge of the maritime, energy, and healthcare sectors, among others, enables it to understand not just how AI works, but how it interacts with other systems in complex infrastructure and assets.

The advent of AI requires a new approach to risk. Whereas conventional mechanical or electric systems degrade over years, AI-enabled systems change within milliseconds. Consequently, a conventional certificate provided by DNV, which normally has a three- to five-year validity, could be invalidated with each collected data point. This necessitates a different assurance methodology, and a thorough understanding of the intricate interplay between a system and AI to allow for a proper assessment of failure modes as well as potential for real-world performance enhancement.

 …

Want to continue?
Log in or create a FREE account.
Enter your username or email address
Enter the password that accompanies your username.
By logging in you agree to receive communication from Quality Digest. Privacy Policy.
Create a FREE account
Forgot My Password

Add new comment

Image CAPTCHA
Enter the characters shown in the image.
Please login to comment.
      

© 2025 Quality Digest. Copyright on content held by Quality Digest or by individual authors. Contact Quality Digest for reprint information.
“Quality Digest" is a trademark owned by Quality Circle Institute Inc.

footer
  • Home
  • Print QD: 1995-2008
  • Print QD: 2008-2009
  • Videos
  • Privacy Policy
  • Write for us
footer second menu
  • Subscribe to Quality Digest
  • About Us
  • Contact Us