Throwing a perfect strike in virtual bowling doesn’t require your gaming system to precisely track the position and orientation of your swinging arm. But if you’re operating a robotic forklift around a factory, manipulating a mechanical arm on an assembly line, or guiding a remote-controlled laser scalpel inside a patient, the ability to pinpoint exactly where it is in 3D space is critical.
ADVERTISEMENT |
To make that measurement more reliable, a public-private team led by the National Institute of Standards and Technology (NIST) has created a new standard test method to evaluate how well an optical tracking system can define an object’s position and orientation—known as its “pose”—with six degrees of freedom: up/down, right/left, forward/backward, pitch, yaw, and roll.
In this segment of the “NIST in 90” series, host Chad Boutin and NIST engineer Roger Bostleman demonstrate why it’s important to evaluate how well optical tracking systems can place an object, such as a mobile robot in a factory, in 3D space.
…
Add new comment