To date, this series focused on relatively simple data analyses, such as learning one summary statistic about our data at a time. In reality, we’re often interested in a slightly more sophisticated analysis, so we can learn multiple trends and takeaways at once and paint a richer picture of our data.
ADVERTISEMENT |
In this article, we will look at answering a collection of counting queries—which we call a workload—under differential privacy. This has been the subject of considerable research effort because it captures several interesting and important statistical tasks. By analyzing the specific workload queries carefully, we can design very effective mechanisms for this task that achieve low error.
…
Add new comment